Extensions 1→N→G→Q→1 with N=C22 and Q=C32×Dic3

Direct product G=N×Q with N=C22 and Q=C32×Dic3
dρLabelID
Dic3×C62144Dic3xC6^2432,708

Semidirect products G=N:Q with N=C22 and Q=C32×Dic3
extensionφ:Q→Aut NdρLabelID
C22⋊(C32×Dic3) = C32×A4⋊C4φ: C32×Dic3/C3×C6S3 ⊆ Aut C22108C2^2:(C3^2xDic3)432,615
C222(C32×Dic3) = C3×Dic3×A4φ: C32×Dic3/C3×Dic3C3 ⊆ Aut C22366C2^2:2(C3^2xDic3)432,624
C223(C32×Dic3) = C32×C6.D4φ: C32×Dic3/C32×C6C2 ⊆ Aut C2272C2^2:3(C3^2xDic3)432,479

Non-split extensions G=N.Q with N=C22 and Q=C32×Dic3
extensionφ:Q→Aut NdρLabelID
C22.(C32×Dic3) = C32×C4.Dic3φ: C32×Dic3/C32×C6C2 ⊆ Aut C2272C2^2.(C3^2xDic3)432,470
C22.2(C32×Dic3) = C3×C6×C3⋊C8central extension (φ=1)144C2^2.2(C3^2xDic3)432,469

׿
×
𝔽